1. Title

2. Research Term
 FY 2000 ~ 2001 ISAS Grant for Basic Study oriented to utilization of Space station
 FY 2002 Ground-based Research Announcement for Space Utilization

3. Research Fields
 Biomedical Science

4. Research Categories
 ISAS Grant for Basic Study oriented to utilization of Space station

5. Research Theme
 Signal transduction of mechanical stress through ASK1-MAP kinase system

6. Investigators
 Hidenori Ichijo
 Kohsuke Takeda
 Hideki Nishitoh

7. Organization
 Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo
 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 Cell Signaling, Graduate School, Tokyo Medical and Dental University,
 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan

8. Summary of Research
 ASK1 was originally identified and cloned by us in 1997 as a gene encoding the cytoplasmic
 signal transducer of physico-chemical stress-induced cell death. ASK1 activates the JNK and p38
 MAP kinases in response to environmental stress. In this research project, a potential role of
 ASK1 in the signal transduction of mechanical stress was investigated in order to understand the
 molecular mechanisms of biological activities induced by the mechanical stress.
To analyze the specific requirement of ASK1 for various physico-chemical stress, ASK1 knock-out mice were generated; ASK1 was thus found to be required for TNF-, oxidative stress- and Endoplasmic Reticulum (ER) stress-induced JNK/p38 activation and apoptosis. ASK1 was also found to form an oligomeric complex upon stress stimulation, followed by an autophosphorylation of activation loop in the kinase domain. Moreover, we found that mechanical stress generated by cell stretching activated p38 through Rap1 activation. All together, these results suggest that ASK1-MAP kinase system may be a potential therapeutic target for the space-associated diseases, and development of such drugs may significantly contribute to the space utilization and development.

9. Publication List

