Direct Exploration of Jupiter Trojan Asteroid using Solar Power Sail

By Osamu MORI1), Hideki KATO1), Jun MATSUMOTO1), Takanao SAIKI1), Yuichi TSUDA1), Naoko OGAWA1), Yuya MIMASU1), Junichiro KAWAGUCHI1), Koji TANAKA3), Hiroyuki TOYOTA3), Nobukatsu OKUIZUMI3), Fuyuto TERUI1), Shigeo KAWASAK1), Hitoshi KUNINAKA1), Kazutaka NISHIYAMA1), Ryudo TSUKIZAKI1), Satoshi HOSONDA1), Nobutaka BANDO1), Kazuhiko YAMADA1), Tatsuki OKADA1), Takahiro IWATA1), Hajime YANO2), Yoko KEBUKAWA2), Jun AOKI3), Masatsugu OTSUKI2), Ryoosuke NAKAMURA4), Chisato OKAMOTO5), Shuji MATSUURA6), Daisuke YONETOKU7), Ayako MATSUOKA1), Reiko NOMURA1), Ralf BODEN8), Toshihiro CHUJO8), Yusuke OKI8), Yuki TAKAO8), Kazuhiro KOYAMA8), Hiroyuki KINOSHITA8), Satoshi KITAO9), Takuma NAKAMURA9), Hirokazu ISHI8), Keisuke UMEDA8), Shuya KASHIOKA11), Miyuki KADOKURA11), Masaya KURAKAWA10) and Motoki WATANABE10)

1)The Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
2)Department of Chemistry, Chemical Engineering and Life Science, Yokohama National University, Yokohama, Japan
3)Project Research Center for Fundamental Science, Osaka University, Osaka, Japan
4)Information Technology Research Institute, AIST, Tsukuba, Japan
5)Department of Planetary Science, Kobe University, Kobe, Japan
6)Department of Physics, Kwansei Gakuin University, Sanda, Japan
7)Faculty of Mathematics and Physics, Kanazawa University, Kanazawa, Japan
8)Department of Aeronautics and Astronautics, The University of Tokyo, Tokyo, Japan
9)Department of Aeronautics and Astronautics, Tokai University, Hiratsuka, Japan
10)Department of Mechanical and Engineering, Aoyama Gakuin University, Sagamihara, Japan
11)School of Physical Sciences, The Graduate University for Advanced Studies, Sagamihara, Japan

The solar power sail can generate sufficient electric power to drive the high specific ion engine in the outer planetary region by thin-film solar cells attached to the entire surface of the spin-type solar sail. This paper proposes the direct exploration of the outer planetary region using solar power sail-craft. The target is an unexplored D/P-type Jupiter Trojan asteroid. A lander is separated from the solar power sail-craft to collect surface and underground samples of the Trojan asteroid and perform in-situ analysis in Plan-A/B. In addition, the lander delivers samples to the solar power sail-craft for sample return to Earth in Plan-B. Scientific observations during the interplanetary cruise are also implemented.

Key Words: Solar Power Sail, Jupiter Trojan Asteroid, Lander, In-Situ Analysis, Sample Return

1. Introduction

Direct exploration mission of small celestial bodies, inspired by Hayabusa1, are being actively carried out. Hayabusa-2,2) OSIRIS-REx,3) and ARM can be mentioned as specific examples. Due to constraints of resources and orbital mechanics, the current target objects are mainly near-Earth asteroids and the Mars satellites, Phobos and Deimos. However, in the near future it can be expected that the targets will shift to higher primordial bodies, located farther away from the Sun.

In the primordial celestial exploration, it is required to scientifically investigate the internal structure of small celestial bodies by in-situ analysis of pristine underground samples which have not been exposed to space weathering. The exploration of primordial celestial objects has been enhanced by landing missions such as MINERVA,4) MASCOT5) and Philae.5)

In the navigation of the outer planetary region, ensuring electric power becomes increasingly difficult and ΔV requirements become large. It is not possible to perform landing or round trip missions to asteroids beyond the main belt with the combination of solar panels and chemical propulsion system, even with a large launch vehicle. Trojan asteroids exploration missions which are studied in Europe and the USA achieve only flyby and rendezvous.7)

The use of an ion engine should be adopted in order to decrease fuel mass. The higher the specific impulse of the ion engine, the larger the required electric power becomes. Besides the use of solar cells, a nuclear power source could be considered. However, adopting nuclear power is inefficient for small and medium-sized spacecraft from the perspective of weight. Thus the solar power sail can be a solution to this problem, since it can generate sufficient power from a large area thin-film solar cell to drive high specific impulse ion engines in the outer planetary region. IKAROS,8) which was launched in 2010, demonstrated thin-film solar power generation as well as photon propulsion successfully.

Based on the above, we propose a mission to explore the higher primordial Trojan asteroids directly using the solar power sail-craft.9) At the Trojan asteroid, a lander is separated from the solar power sail-craft to collect surface and underground samples, and perform in-situ analysis in Plan-A/B. In addition, the lander delivers samples to the solar power sail-craft for sample return in Plan-B. This paper shows a direct exploration mission of the outer planetary region by the solar power sail-craft in detail and presents an initial design for this spacecraft.
2. Direct Exploration Mission of Outer Planetary Region by Solar Power Sail-craft

2.1. Mission outline

A spin-type large solar sail with an area of 2500m² (10~15 times larger than that of IKAROS) can be an ultra-light power generation system (1kW/kg) and generate high electric power in the outer planetary region (5kW@5.2AU) by attaching thin-film solar cells on the entire surface of the sail membrane, as shown in Fig. 1(a). This electric-generating capacity is 10 times larger than that of the solar panels of JUNO (486W@5.2AU), shown in Fig 1(b). Even if using thin-film solar cell panels with a rigid-frame, the power generation system cannot achieve significant lightweight and large sizes.

A high-performance ion engine with a specific impulse of 7000 seconds (2~3 times larger than that of Hayabusa) is driven by this high electric power, and is capable of achieving a ΔV in the outer planetary region. This is much more than the ΔV by chemical propulsion of JUNO, but much less fuel mass is required because of the high specific impulse.

The mission sequence is shown in Fig. 2. The spacecraft is supposed to make the world’s first trip to a Jupiter Trojan asteroid around the L4 point of the Jupitar-Sun system using both Earth and Jupiter gravity assists. After arriving at the Trojan asteroid, a lander is separated from the solar power sail-craft to collect surface and underground samples and perform in-situ analysis in Plan-A/B. In addition, the lander delivers samples to the solar power sail-craft for sample return to Earth in Plan-B. In this mission, by probing the Trojan asteroids directly, it is possible to examine the planetary movement model of gas giants as the latest hypothesis of solar system formation theory empirically.

This mission also aims to provide several new innovative first-class astronomical science observations during the deep space cruising phase as shown in Fig. 3. Infrared telescope (EXZIT), gamma-ray burst polarimeter (GAP2), dust detector (ALDN2) and magnetometer (MGF) utilize features of cruising phase. They can greatly contribute to the progression of planetary science, astronomy and space physics.

The solar power sail-craft will carry out demonstrations of the following new technologies that will be required for future solar system exploration.

1) A large membrane space structure including spin deployment strategy: Area = 2500m², Heat fused film
2) High power generation using Thin-film solar cells: Power = 5kW@5.2AU, CIGS, the bending prevention by sputtering
3) Sail control using a reflectivity control device: Spin rate control, spin axis direction control
4) Hybrid propulsion using both solar sail and ion engines: Hybrid navigation using photon propulsion and electric propulsion
5) Ultra-high specific impulse ion engines: Specific impulse = 7000 seconds, service life = 4000 hours
6) Reaction control system capable of operation at very low temperatures: Ignition temperature = -40 degree C
7) Long-distance orbit determination: USO, ΔVLBI technology
8) Autonomous operation and landing of a lander

9) Surface and underground sampling, in-situ analysis
10) Rendezvous using an RF sensor, berthing and sample transfer from lander to solar sail spacecraft (in Plan-B)
11) High speed re-entry capsule (in Plan-B): Re-entry speed = 13~15km/s, Vinf = 10km/s

The main features of this mission are the following.

1) World’s First Photon / Electric Hybrid Sail Propulsion
2) World’s Highest Performance Ion Engines
3) World’s First Background Emission Mapping
4) World’s First Access to a Trojan Asteroid
5) World’s First Sample Analysis of a Trojan Asteroid
6) World’s First Round Trip to the Outer Solar System (in Plan-B)
7) World’s Highest Re-entry Speed Capsule (in Plan-B)
2.2. Mission purpose

The purpose of this mission is to demonstrate the direct exploration in the outer planetary region using a solar power sail to lead the future of solar system exploration.

(1) Navigation technology: Navigation technology using a solar power sail-craft is demonstrated in the medium scale plan, in order to transport the payload needed for landing operations, to the outer planetary region, and in the round trip.

(2) Exploration technology: The following exploration techniques which are necessary for achieving mission success are demonstrated together: rendezvous with a Trojan asteroid, surface and underground sampling, and in-situ analysis by the lander; sample return (in Plan-B).

(3) Scientific observations: Scientific observations during the deep space cruising phase and at the Trojan asteroid are implemented.

2.3. Mission significance

(1) Navigation technology: Ensuring electric power is difficult and ΔV becomes large in the outer planetary region navigation. It is not possible to perform round trip missions including landing to asteroids beyond the main belt, even with a large rocket, with a combination of solar panels and chemical propulsion systems. Therefore, it is assumed that a system which drives an electric propulsion engine with nuclear power will eventually play an important role for large scale interplanetary transport in future. On the other hand, electric propulsion which utilizes the power generated by large solar cells without any frames will be adopted for small and medium-sized spacecraft because of the inefficiency and high weight of nuclear systems for spacecraft of this size. The solar power sail enables landing and round trip missions to celestial bodies within the distance of Saturn. As a consequence, Japan can secure superiority in sample return exploration, regarding frontier solar exploration missions (Fig. 4).

(2) Exploration technology: In the exploration of primordial celestial bodies, it is important to enhance landing missions by collecting pristine underground samples which have not been influenced by space weathering. When landing on celestial bodies larger than 10km in diameter, the fuel consumption increases. Therefore, it is necessary to investigate such asteroids by a separate lander. In addition, it is also required to obtain in-situ analysis because of the long duration of a round trip mission. Considering the above, in this plan, the technology demonstration is carried out in conjunction, to realize the following mission sequence: The solar power sail performs a rendezvous with a Trojan asteroid and lets a lander land on the surface. The lander then collects surface and underground samples, and carries out in-situ analysis. Sample return is also performed in Plan-B.

(3) Scientific observation: It can be considered that the targets for small celestial body exploration will shift to D/P-type asteroids, as higher primordial and farther small celestial bodies. In particular, unexplored D/P-type asteroids are predominant in the population of Jupiter Trojan asteroids. In this mission, direct exploration which includes both landing on a Trojan asteroid and a round trip mission, can be achieved.

Furthermore, several astronomical science observations by EXZIT, GAP2, ALDN2 and MGF are expected to provide first-class scientific results in the early stages of this mission. It is also expected to provide a breakthrough of deep space based astronomy as a new scientific field.

2.4. Mission positioning

The relationship between Hayabusa, IKAROS, Hayabusa-2 and the solar power sail-craft is shown in Table 1. In regard to navigation technology, the solar power sail-craft is composed of a high-Isp ion engine and a large solar sail which have both been successfully demonstrated by Hayabusa and IKAROS respectively. In regard to exploration technology, Hayabusa landed directly on an asteroid to collect a surface sample. In addition to this, Hayabusa-2 will collect underground samples using a small carry-on impactor. On the other hand, the lander which is separated from the solar power sail-craft, lands on the asteroid to collect surface and underground samples and carries out in-situ analysis. Regarding scientific observations, the S-type asteroid Itokawa and C-type asteroid Ryugu (1999JU3) are the targets of Hayabusa and Hayabusa-2, respectively. For the solar power sail-craft, a D/P-type Trojan asteroid is selected as the target. In addition, the solar power sail-craft performs cruise science observations, like IKAROS.

3. Initial Design of Solar Power Sail-craft Mission

3.1. Trajectory design

If the diameter of the asteroid is more than 20km, there is a high probability of it being D/P type. From the point of view of landing, the gravity should be as small as possible. Therefore, Trojan asteroids with diameters between 20–30km are selected as target candidates. The prerequisite of the trajectory design is as follows;
- Launch: 2022
- Initial mass at Earth departure/launch: 1300kg
- Initial mass at Trojan departure: 1100kg
- IES specific impulse: 7000 seconds

<table>
<thead>
<tr>
<th>Table 1. Mission positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft</td>
</tr>
<tr>
<td>Hayabusa</td>
</tr>
<tr>
<td>IKAROS</td>
</tr>
<tr>
<td>Hayabusa-2</td>
</tr>
<tr>
<td>Solar Power Sail-craft</td>
</tr>
</tbody>
</table>
The superiority of the solar power sail.

than the Trojan asteroids (Fig. 6). This difference indicates the comet 67P/Churyumov–Gerasimenko, which is located closer transported the Philae lander of the same 100kg mass to the asteroid. On the other hand, Rosetta with its mass of 3 to tons will be able to transport a 100kg lander to the Trojan asteroids. Thus a solar power sail-craft, with a mass of about 1285kg. This means that the trajectory plan is feasible, as the estimated spacecraft mass is within the considered mass of 1300kg. Thus a solar power sail-craft, with a mass of about 1.3 tons will be able to transport a 100kg lander to the Trojan asteroid. On the other hand, Rosetta with its mass of 3 tons transported the Philae lander of the same 100kg mass to the comet 67P/Churyumov–Gerasimenko, which is located closer than the Trojan asteroids (Fig. 6). This difference indicates the superiority of the solar power sail.

-IES thrust: 26.1mN per unit at 100% slot ring
-IES use power: 1600W per unit at 100% slot ring
-IES available power: max 2600W at 100% slot ring
-IES number of operating units: max 2 units during 1.4-year-EDVEGA and max 3 units during 2-year-EDVEGA
-IES operation rate: max 70%
-Sun angle: max 45deg

-Stay period at Trojan asteroid: min 1 year

A trajectory example for Plan-B is shown in Fig. 5. The launcher configuration is H2A204; the target object is 2001DY103; the outbound transfer period is about 13 years. The required fuel mass is decreased and inclination is changed by a Jupiter swing-by. In Plan A, the flight time to the same asteroid can be shortened to about 11 years by using additional ΔV, because the sample return is not performed.

The overview of each sub-system is as follows.
-Ion engine system (IES): 6 ion thrusters are mounted. In order to spin up / down, three thrusters each are inclined towards the spin up / down direction. Four IES power processing units (IPPU) are equipped account for redundancy.
-Communication system (COM): Two X-band transponders are equipped. Low gain antenna (LGA-A, LGA-B) are used in the Earth neighborhood. The medium gain antenna (MGA) is mainly used during cruising phase. The high gain antenna (HGA) is mainly used during the rendezvous phase. HGA and MGA can be pointed to Earth by a despun platform. The communication rate of the HGA is aimed to provide a data transmission rate of 16Kbps by using the DSN in the Jupiter zone.
-Thermal control system (TCS): The -Z plane is set as the main radiating face and the IPPU is mounted on the -Z plane. In order to cope with the significantly changing thermal environment and to reduce the heater power, thermal louvers and the thermal switches are utilized.
-Electric power system (EPS): A Sub solar cell (SUBCELL) mounted on the +Z plane is used prior to deployment of the power sail. Since the voltage of the cells is significantly changed by the distance from the sun, it is equipped with a function to switch the series number.
-Reaction control system (RCS): A chemical propulsion system driven at ultra-low temperatures with much less heater power is adopted. The piping system is divided into two lines for redundancy.
-Attitude control system (ACS): Star tracker (STT), Spin type sun sensor (SSAS), inertial reference unit (IRU) and optical navigation camera (ONC) are equipped. The IES, reflectivity control device (RCD) and RCS are used to control attitude.
-Data handling unit (DHU): Each device is connected through a space wire router (SpW). Mission system equipment is connected to the mission processing unit (DE).
-Mission system (MS): EXZIT, GAP2, ALDN2, MGF, imaging spectrometer (IS), lander and re-entry capsule are carried.

Fig. 5. Trajectory for Plan-B

3.2. System design

The initial design of the solar power sail-craft has been conducted. Wet mass, which includes a 100kg lander, is 1285kg. This means that the trajectory plan is feasible, as the estimated spacecraft mass is within the considered mass of 1300kg. Thus a solar power sail-craft, with a mass of about 1.3 tons will be able to transport a 100kg lander to the Trojan asteroid. On the other hand, Rosetta with its mass of 3 tons transported the Philae lander of the same 100kg mass to the comet 67P/Churyumov–Gerasimenko, which is located closer than the Trojan asteroids (Fig. 6). This difference indicates the superiority of the solar power sail.
3.3. Mission Analysis at Trojan Asteroid

Since the solar power sail-craft has a large sail and spins, it is very risky for it to land on the asteroid itself. A lander is therefore separated and performs the landing, sampling, and in-situ analysis. It delivers a sample to the solar power sail-craft by rendezvous and docking for sample return in Plan-B. The operational policy after the arrival at the Trojan asteroid is as shown in Fig. 8.

1) The solar power sail-craft is placed in a hovering home position (HP) above the asteroid, identical to Hayabusa. Since the size of the target asteroid is large, the HP altitude is 250~1000km to conserve fuel needed for maintaining this HP.

2) The solar power sail-craft performs global mapping and scientific observations from the HP. These are used for the landing site selection.

3) The solar power sail-craft performs a rehearsal of the lander deployment by descending to a lower altitude and ascending again. This makes it possible to investigate the asteroid surface around the selected landing point in detail.

4) The solar power sail-craft descends again, and separates the lander at an altitude of 1km.

5) The solar power sail-craft ascends to an altitude of 50km and waits for lander.

6) The landing method is not a free fall but a soft landing utilizing an RCS.

7) The lander collects the surface and underground samples.

8) The collected sample is conveyed to the mass spectrometer and in-situ analysis is performed.

9) The lander takes off to rendezvous with the solar power sail-craft.

10) The lander docks with the solar power sail-craft and delivers the sample.

11) The lander is separated again and decommissioned. Meanwhile, the solar power sail-craft returns to its original HP.

The structural design and equipment layout of the lander is shown in Fig. 9. It is composed of an octagonal shape with legs at the bottom. Unlike the Philae, the lander is equipped with an RCS consisting of 12 cold gas thrusters. Since the sun distance of Trojan asteroids is about 5.2AU, significant power...
generation by solar cells cannot be expected. Therefore, the lander is exclusively driven by a battery. Science equipment is assigned a mass of 20kg, including sampling devices. The wet mass is satisfying the mass of 100kg assigned to the lander.

The lander has two sampling devices to collect the surface and underground samples. For the former, a sampler horn, similarly to that of Hayabusa is used. For the latter, a pneumatic drill excavates a 1m regolith layer using high-pressure gas as shown in Fig. 10. This device has a telescopic structure. At first, extension and excavation are performed at the same time. Next, additional high-pressure gas is released and underground samples are collected. If there is a rock, a projectile is shot to generate the fragments of the samples.

In rendezvous phase, lander navigation is supported by the solar power sail-craft. In particular, this is a new point to measure the relative direction between the solar power sail-craft and the lander by using the lander’s phased array antenna as an RF sensor.

Because the solar power sail-craft is spinning and the delay time is large, the docking should be conducted autonomously as shown in Fig. 11. At first, the lander extends the extension boom. Next, the lander approaches toward the solar power sail-craft to insert the boom into the holding space. Due to the tapered shape of the holding space, the tip of the boom is guided to the connection part regardless of some errors of guidance, navigation and control. The tip of the boom is connected by electromagnetic force. This is to make the second separation of the lander easier.

Figure 12 shows the sample transfer sequence. The samples are first transferred to the container called sample catcher via the induction pathway at the sampling. The extension mast pushes the sample catcher up to the re-entry capsule after the docking is completed.

4. Conclusion

In this paper, a direct exploration mission of the outer planetary region by a solar power sail-craft was proposed. In regard to navigation technology, the transportation of a lander and a first trip to a Jupiter Trojan asteroid is demonstrated. In regard to exploration technology, landing, surface and underground sampling, and in-situ analysis by a lander is demonstrated. Scientific observations during the interplanetary cruise as well as at a D/P-type Trojan asteroid are also implemented.

With this mission, the solar power sail can lead future solar system exploration, as well as provide a breakthrough of space astronomy as a new scientific field.
References

